Skip to main content

Cre lox system - Basics

It's been a long time, since I wrote a post here. Finally, final year of my course and so very busy :) with books! And now, got time to share with you.

As you know already (don't know?, then get to know :P ), I use to have favorite subjects in each semester, third semester it was microbiology, then in fourth semester, it was cell biology, fifth was molecular biology, sixth was genetic engineering and now i'm in seventh semester, but, you know what, I don't have a favorite subject!!! Don't worry that I lost interest, instead, I got 3 favorite subjects - Immunology, Animal biotechnology and Plant Biotechnology!

It's awesome this time to have more than one favorite subject and here I'm gonna tell you something about, cre-lox system which is most widely used for making modifications (mostly deletions). These modifications can be done at a specific tissue alone by using a tissue specific promoter i.e., you can selectively knock out a particular gene in particular cells (for eg: hepatocytes) alone.

Cre recombinase is a protein which could bind with specific sequences called loxP sequences. To explain it in a simple way, the cre recombinase binds at loxP sites on either side of your gene (which is to be deleted) and makes a cut! This leads to removal of the gene and further the break is repaired using the DNA ligase of host system.

A single loxP site will have 13bp on either side of middle 8bp. The cre recombinase protein binds with this 13bp sequences forming dimer i.e., one loxP site contributes for a dimer (containing 2 cre recombinase units). Similarly, loxP on the other side of the target gene will contribute for a dimer formation. Then these two dimers will form tetramer (by folding the DNA strand as shown in figure. Then, cutting at the tetramer site happens leading to either translocation, inversion or deletion depending on the direction of the loxP site (i.e whether it is direct or invert repeat on either side of the target gene or located on different chromosomes)

                         13bp                          8bp                  13bp

This insertion, deletion and translocation could be done specifically at a particulat type of cell by using specific promoters. For example: To delete a particular gene in kidney cells alone, one could use kidney specific promoter for controlling the production of cre recombinase, so that cre recombinase will be expressed only in kidney cells. The molecular mechanisms of this deletions and recombinations invloves holliday junction formation. But, to be frank, i'm not clear or good at this holliday junction.

I''m trying to understand the molecular mechanism behind this, and, once I'm clear with it, I'll share it with you.

Understood the cre-loxp system? Got  any doubt? anything wrong in my explanation? Kindly comment and I would try to reply or correct as soon as possible.


  1. Lovely Your Post..............

    CRE Recombinase- GenTarget Inc - CRE Recombinase, from bacteriophage P1, catalyzes recombination between 34 base-pair target sequences, called lox sites. Purified CRE enzyme can join individual plasmids containing lox sites.

  2. Nicely explained. I am also writing a blogs on life sciences topics. Kindly go through them and give me some suggestions regarding my blogs.


Post a Comment

Popular posts from this blog

Genotyping, Phenotyping, Karyotyping!

We are going to discuss here about three different typing! They are genotyping, phenotyping and karyotyping. Before learning about them let us learn what is genotype, phenotype and karyotype!

Genotype refers to the genetic make up of an organism. Generally the genes of an organism. The genotype of an organism can be represented as BB or Bb or bb based on the gene. If a person is having two recessive CFTR genes, then he will be getting cytic fibrosis. Genotype of an organism has also effect over the phenotype. Thus, genotype is representing the alleles of a gene in general. Genotyping is generally done based on PCR or hybridization.

Phenotype refers to the visible characters like structure, color and also the biochemical characters. This is based on the phenotype. Phenotyping can be done using biochemical assays.

Karyotype refers to the number of structure of chromosomes in an organism. karyotyping is done by staining and visualising the cells under microscope.

Isolation of monocytes from PBMC (Peripheral Blood Mononuclear Cells) - Principle and protocol

Whenever I'm made to realise that I'm not clear enough or good at something, I try to make myself clear with it. It happened today, during my laboratory examination, I was asked to perform monocyte isolation from a given blood sample, but, unfortunately, I was not very clear with the principle behind it.(but, still I managed to complete the experiment as I know the protocol, but, knowing the principle behind each step of the protocol clearly is very important, isn't it?). But, nothing is wrong in it, I made myself clear with it now. That's good, right?

So, let me share with you some basic principle and protocol for isolating monocyte from blood sample.

For isolating monocytes, initially we must isolate PBMC (Peripheral bood mono nuclear cells) from the blood sample. Here, let us make few terminologies clear before starting with the principle.

Peripheral blood sample - It is the blood sample obtained from acral areas of body (in general, it is the blood collected from ha…

Extraction of Plasmid DNA - Principle behind usage of various reagents

Have a good time :) Last time I had explained you the procedure for "electroporation" and now with those electroporated cells, you can extract the plasmid DNA.

I'm not going to share the exact protocol here, but the mechanism behind the protocol we use in our lab.

Generally, the following reagents are used for the extraction of plasmid DNA.,
1) STET buffer
4)Phenol chloroform
5) Alcohol
6) Sodium acetate

If you need the protocol, kindly mail me I'll send you the  protocol. Now, let us discuss the principle behind the usage of each of these reagents.

STET buffer - contains Sucrose which helps in maintaining osmotic pressure; Triton X which helps in cleaving the cell wall; EDTA which acts as a chelating agent; Tris HCl is used as buffer.

Lysozyme - cleaves the cell membrane and wall;

RNAase- As  the name indicates, it cleaves RNA

Phenol chloroform (buffer saturated- pH 8) - Phenol denatures proteins, Chloroform prevents oxidised phenol from bind…